3 years ago

Spectrally-Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal-Boron Nitride.

Hannah L. Stern, Ruizhi Wang, Ye Fan, Ryo Mizuta, James C. Stewart, Lisa-maria Needham, Trevor D Roberts, Rebecca Wai, Naomi S Ginsberg, David Klenerman, Stephan Hofmann, Steven F. Lee

Hexagonal boron nitride (h-BN) is a 2D, wide band-gap semiconductor that has recently been shown to display bright room-temperature emission in the visible region, sparking immense interest in the material for use in quantum applications. In this work, we study highly crystalline, single atomic layers of chemical vapour deposition (CVD)-grown hexagonal boron nitride and find predominantly one type of emissive state. Using a multidimensional super-resolution fluorescence microscopy technique we simultaneously measure spatial position, intensity and spectral properties of the emitters, as they are exposed to continuous wave illumination over minutes. As well as low emitter heterogeneity, we observe inhomogeneous broadening of emitter line-widths and power law dependency in fluorescence intermittency, this is in striking similarity to previous work on quantum dots. These results show that high control over h-BN growth and treatment can produce a narrow distribution of emitter type, and that surface interactions heavily influence the photodynamics. Furthermore, we highlight the utility of spectrally-resolved wide-field microscopy in the study of optically-active excitons in atomically thin two-dimensional materials.

Publisher URL: http://arxiv.org/abs/1901.02793

DOI: arXiv:1901.02793v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.