3 years ago

Tail-free self-accelerating solitons and vortices.

Jieli Qin, Zhaoxin Liang, Boris A. Malomed, Guangjiong Dong

Self-accelerating waves in conservative systems, which usually feature slowly decaying tails, such as Airy waves, have drawn great interest in studies of quantum and classical wave dynamics. They typically appear in linear media, while nonlinearities tend to deform and eventually destroy them. We demonstrate, by means of analytical and numerical methods, the existence of robust one- and two-dimensional (1D and 2D) self-accelerating tailless solitons and solitary vortices in a model of two-component Bose-Einstein condensates, dressed by a microwave (MW) field, whose magnetic component mediates long-range interaction between the matter-wave constituents, with the feedback of the matter waves on the MW field taken into account. In particular, self-accelerating 2D solitons may move along a curved trajectory in the coordinate plane. The system may also include the spin-orbit coupling between the components, leading to similar results for the self-acceleration. The effect persists if the contact cubic nonlinearity is included. A similar mechanism may generate 1D and 2D self-accelerating solitons in optical media with thermal nonlinearity.

Publisher URL: http://arxiv.org/abs/1901.02325

DOI: arXiv:1901.02325v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.