3 years ago

Turning drops into bubbles: Elastic cavitation by diffusion.

M. A. Bruning, M. Costalonga, J. H. Snoeijer, A. Marin

Some members of the vegetal kingdom can achieve surprisingly fast movements making use of a clever combination of evaporation, elasticity and cavitation. In this process, enthalpic energy is transformed into elastic energy and suddenly released in a cavitation event which produces kinetic energy. Here we study this uncommon energy transformation by a model system: a droplet in an elastic medium shrinks slowly by diffusion and eventually transforms into a bubble by a rapid cavitation event. The experiments reveal the cavity dynamics over the extremely disparate timescales of the process, spanning 9 orders of magnitude. We model the initial shrinkage as a classical diffusive process, while the sudden bubble growth and oscillations are described using an inertial-(visco)elastic model, in excellent agreement with the experiments. Such a model system could serve as a new paradigm for motile synthetic materials.

Publisher URL: http://arxiv.org/abs/1901.02812

DOI: arXiv:1901.02812v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.