3 years ago

Turbulence-induced rogue waves in Kerr resonators.

Saliya Coulibaly, Majid Taki, Abdelkrim Bendahmane, Guy Millot, Bertrand Kibler, Marcel Gabriel Clerc

Spontaneous emergence of self-organized patterns and their bifurcations towards a regime of complex dynamics in non-equilibrium dissipative systems is a paradigm of phase transition. Indeed, the behavior of these patterns in the highly nonlinear regime remains less explored, even in recent high-quality-factor resonators such as Kerr-nonlinear optical ones. Here, we investigate theoretically and experimentally the alteration of the resulting Kerr frequency combs from the weakly to the highly nonlinear regime, in the frameworks of spatiotemporal chaos, and dissipative phase transitions. We reveal the existence of a striking and easily accessible scenario of spatiotemporal chaos, free of cavity solitons, in a monostable operating regime, wherein a transition to amplitude turbulence via spatiotemporal intermittency is evidenced. Moreover, statistics of the light bursts in the resulting turbulent regime unveils the existence of rogue waves as extreme events characterized by long-tail statistics.

Publisher URL: http://arxiv.org/abs/1901.02833

DOI: arXiv:1901.02833v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.