3 years ago

Stable giant vortex annuli in microwave-coupled atomic condensates.

Jieli Qin, Guangjiong Dong, Boris Malomed

Stable self-trapped vortex annuli (VAs) with large values of topological charge S (giant VAs) are not only a subject of fundamental interest, but are also sought for various applications, such as quantum information processing and storage. However, in conventional atomic Bose-Einstein condensates (BECs) VAs with S>1 are unstable. Here, we demonstrate that robust self-trapped fundamental solitons (with S=0) and bright VAs (with the stability checked up to S=5), can be created in the free space by means of the local-field effect (the feedback of the BEC on the propagation of electromagnetic waves) in a condensate of two-level atoms coupled by a microwave (MW) field, as well as in a gas of MW-coupled fermions with spin 1/2. The fundamental solitons and VAs remain stable in the presence of an arbitrarily strong repulsive contact interaction (in that case, the solitons are constructed analytically by means of the Thomas-Fermi approximation). Under the action of the moderate attractive contact interaction which, by itself, would lead to collapse, the fundamental solitons and VAs exist and are stable, respectively; it is interesting that higher-order VAs are more robust than their lower-order couterparts, on the contrary to what is known in other systems that may support stable self-trapped vortices. Conditions for the experimental realizations of the VAs are discussed.

Publisher URL: http://arxiv.org/abs/1610.06709

DOI: arXiv:1610.06709v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.