3 years ago

Radiation reaction of classical hyperbolic oscillator: experimental signatures.

Yuan Shi

When accelerated by a constant force in the lab frame, a classical charge experiences no self force. In this case, the particle radiates without dissipating its kinetic and potential energy. But what happens when the particle enters another region with equal and opposite acceleration? Does the oscillating charge lose its mechanical energy similar to a radiating dipole, even though it seems to lose no mechanical energy within each region of constant acceleration? In this paper, I will show how mechanical energy is transferred to radiation energy via the Schott energy when the particle crosses the boundary between the two regions. In particular, I will show how preacceleration, which is usually regarded as an unphysical effect of the Lorentz-Abraham-Dirac self force, is essential for the energy transfer. Moreover, I will show that the commonly adopted Landau-Lifshitz approximation, which removes preacceleration, introduces second-order secular energy error. On a more fundamental level, the validity of classical electrodynamics is in fact questionable because quantum effects are likely important. The classical prediction can be tested experimentally by observing frequency chirping of radiation, whereby micro physics leaves signatures on macroscopic scales. The required experimental accuracy is estimated. Trap experiment of this type is complementary to collider experiments that endeavor to observe radiation reaction for elementary particles.

Publisher URL: http://arxiv.org/abs/1901.02509

DOI: arXiv:1901.02509v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.