3 years ago

An investigation of C, N and Na abundances in red giant stars of the Sculptor dwarf spheroidal galaxy.

C. Salgado, G. S. Da Costa, J. E. Norris, D. Yong

The origin of the star-to-star abundance variations found for the light elements in Galactic globular clusters (GGCs) is not well understood, which is a significant problem for stellar astrophysics. While the light element abundance variations are very common in globular clusters, they are comparatively rare in the Galactic halo field population. However, little is known regarding the occurrence of the abundance anomalies in other environments such as that of dwarf spheroidal (dSph) galaxies. Consequently, we have investigated the anti-correlation and bimodality of CH and CN band strengths, which are markers of the abundance variations in GGCs, in the spectra of red giants in the Sculptor dwarf spheroidal galaxy. Using spectra at the Na~D lines, informed by similar spectra for five GGCs (NGC 288, 1851, 6752, 6809 and 7099), we have also searched for any correlation between CN and Na in the Sculptor red giant sample. Our results indicate that variations analogous to those seen in GGCs are not present in our Sculptor sample. Instead, we find a weak positive correlation between CH and CN, and no correlation between Na and CN. We also reveal a deficiency in [Na/Fe] for the Sculptor stars relative to the values in GGCs, a result which is consistent with previous work for dSph galaxies. The outcomes reinforce the apparent need for a high stellar density environment to produce the light element abundance variations.

Publisher URL: http://arxiv.org/abs/1901.02563

DOI: arXiv:1901.02563v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.