3 years ago

Non-hermitian Hamiltonian description for quantum plasmonics: from dissipative dressed atom picture to Fano states.

H. Varguet, B. Rousseaux, D. Dzsotjan, H. R. Jauslin, S. Guerin, G. Colas Des Francs

We derive effective Hamiltonians for a single dipolar emitter coupled to a metal nanoparticle (MNP) with particular attention devoted to the role of losses. For small particles sizes, absorption dominates and a non hermitian effective Hamiltonian describes the dynamics of the hybrid emitter-MNP nanosource. We discuss the coupled system dynamics in the weak and strong coupling regimes offering a simple understanding of the energy exchange, including radiative and non radiative processes. We define the plasmon Purcell factors for each mode. For large particle sizes, radiative leakages can significantly perturbate the coupling process. We propose an effective Fano Hamiltonian including plasmon leakages and discuss the link with the quasi-normal mode description. We also propose Lindblad equations for each situation and introduce a collective dissipator for describing the Fano behaviour.

Publisher URL: http://arxiv.org/abs/1807.03565

DOI: arXiv:1807.03565v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.