3 years ago

Adaptive sampling for UAV tracking

Yong Wang, Xinbin Luo, Lu Ding, Shan Fu, Shiqiang Hu

Abstract

Unmanned aerial vehicle (UAV)-based target tracking is a long-standing problem in UAV applications. In this paper, we develop a local kernel feature to encode properties of UAV tracking object. Meanwhile, object proposals can provide a reliable prior knowledge to identify tracking target being an object or not. Therefore, we propose to integrate detection proposal method into a tracking by detection framework. More specifically, we adopt edge box proposals and random samplings as training examples and then train these examples for tracking task. The structured support vector machine is employed to implement training and detecting procedure. To reveal the effectiveness of our method, experiment is performed on the UAV123 benchmark dataset. Among state-of-the-art methods, our method achieves comparable results.

Publisher URL: https://link.springer.com/article/10.1007/s00521-018-03996-8

DOI: 10.1007/s00521-018-03996-8

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.