3 years ago

Blind Image Deblurring via Deep Discriminative Priors

Lerenhan Li, Jinshan Pan, Wei-Sheng Lai, Changxin Gao, Nong Sang, Ming-Hsuan Yang

Abstract

We present an effective blind image deblurring method based on a data-driven discriminative prior. Our work is motivated by the fact that a good image prior should favor sharp images over blurred ones. In this work, we formulate the image prior as a binary classifier using a deep convolutional neural network. The learned prior is able to distinguish whether an input image is sharp or not. Embedded into the maximum a posterior framework, it helps blind deblurring in various scenarios, including natural, face, text, and low-illumination images, as well as non-uniform deblurring. However, it is difficult to optimize the deblurring method with the learned image prior as it involves a non-linear neural network. In this work, we develop an efficient numerical approach based on the half-quadratic splitting method and gradient descent algorithm to optimize the proposed model. Furthermore, we extend the proposed model to handle image dehazing. Both qualitative and quantitative experimental results show that our method performs favorably against the state-of-the-art algorithms as well as domain-specific image deblurring approaches.

Publisher URL: https://link.springer.com/article/10.1007/s11263-018-01146-0

DOI: 10.1007/s11263-018-01146-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.