3 years ago

Characterizing and predicting downloads in academic search

Xinyi Li, Maarten De Rijke

Publication date: May 2019

Source: Information Processing & Management, Volume 56, Issue 3

Author(s): Xinyi Li, Maarten de Rijke

Abstract

Numerous studies have been conducted on the information interaction behavior of search engine users. Few studies have considered information interactions in the domain of academic search. We focus on conversion behavior in this domain. Conversions have been widely studied in the e-commerce domain, e.g., for online shopping and hotel booking, but little is known about conversions in academic search. We start with a description of a unique dataset of a particular type of conversion in academic search, viz. users’ downloads of scientific papers. Then we move to an observational analysis of users’ download actions. We first characterize user actions and show their statistics in sessions. Then we focus on behavioral and topical aspects of downloads, revealing behavioral correlations across download sessions. We discover unique properties that differ from other conversion settings such as online shopping. Using insights gained from these observations, we consider the task of predicting the next download. In particular, we focus on predicting the time until the next download session, and on predicting the number of downloads. We cast these as time series prediction problems and model them using LSTMs. We develop a specialized model built on user segmentations that achieves significant improvements over the state-of-the art.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.