3 years ago

The role of {\beta}-titanium ligaments in the deformation of dual phase titanium alloys.

Tea-sung Jun, Xavier Maeder, Ayan Bhowmik, Gaylord Guillonneau, Johann Michler, Finn Giuliani, T. Ben Britton

Multiphase titanium alloys are critical materials in high value engineering components, for instance in aero engines. Microstructural complexity is exploited through interface engineering during mechanical processing to realise significant improvements in fatigue and fracture resistance and strength. In this work, we explore the role of select interfaces using in-situ micromechanical testing with concurrent observations from high angular resolution electron backscatter diffraction (HR-EBSD). Our results are supported with post mortem transmission electron microscopy (TEM). Using micro-pillar compression, we performed in-depth analysis of the role of select {\beta}-titanium (body centred cubic) ligaments which separate neighbouring {\alpha}-titanium (hexagonal close packed) regions and inhibit the dislocation motion and impact strength during mechanical deformation. These results shed light on the strengthening mechanisms and those that can lead to strain localisation during fatigue and failure.

Publisher URL: http://arxiv.org/abs/1812.07250

DOI: arXiv:1812.07250v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.