Quantum Analog-Digital Conversion.
Many quantum algorithms, such as Harrow-Hassidim-Lloyd (HHL) algorithm, depend on oracles that efficiently encode classical data into a quantum state. The encoding of the data can be categorized into two types; analog-encoding where the data are stored as amplitudes of a state, and digital-encoding where they are stored as qubit-strings. The former has been utilized to process classical data in an exponentially large space of a quantum system, where as the latter is required to perform arithmetics on a quantum computer. Quantum algorithms like HHL achieve quantum speedups with a sophisticated use of these two encodings. In this work, we present algorithms that converts these two encodings to one another. While quantum digital-to-analog conversions have implicitly been used in existing quantum algorithms, we reformulate it and give a generalized protocol that works probabilistically. On the other hand, we propose an deterministic algorithm that performs a quantum analog-to-digital conversion. These algorithms can be utilized to realize high-level quantum algorithms such as a nonlinear transformation of amplitude of a quantum state. As an example, we construct a "quantum amplitude perceptron", a quantum version of neural network, and hence has a possible application in the area of quantum machine learning.
Publisher URL: http://arxiv.org/abs/1805.11250
DOI: arXiv:1805.11250v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.