Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems.
We establish a link between metastability and a discrete time-crystalline phase in a periodically driven open quantum system. The mechanism we highlight requires neither the system to display any microscopic symmetry nor the presence of disorder, but relies instead on the emergence of a metastable regime. We investigate this in detail in an open quantum spin system, which is a canonical model for the exploration of collective phenomena in strongly interacting dissipative Rydberg gases. Here, a semi-classical approach reveals the emergence of a robust discrete time-crystalline phase in the thermodynamic limit in which metastability, dissipation, and inter-particle interactions play a crucial role. We perform large-scale numerical simulations in order to investigate the dependence on the range of interactions, from all-to-all to short ranged, and the scaling with system size of the lifetime of the time crystal.
Publisher URL: http://arxiv.org/abs/1807.10161
DOI: arXiv:1807.10161v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.