3 years ago

Dynamics of Order Parameters of Non-stoquastic Hamiltonians in the Adaptive Quantum Monte Carlo Method.

Shunta Arai, Masayuki Ohzeki, Kazuyuki Tanaka

We derive macroscopically deterministic flow equations with regard to the order parameters of the ferromagnetic $p$-spin model with infinite-range interactions. The $p$-spin model has a first-order phase transition for $p>2$. In the case of $p\geq5$ ,the $p$-spin model with anti-ferromagnetic XX interaction has a second-order phase transition in a certain region. In this case, however, the model becomes a non-stoqustic Hamiltonian, resulting in a negative sign problem. To simulate the $p$-spin model with anti-ferromagnetic XX interaction, we utilize the adaptive quantum Monte Carlo method. By using this method, we can regard the effect of the anti-ferromagnetic XX interaction as fluctuations of the transverse magnetic field. A previous study derived deterministic flow equations of the order parameters in the quantum Monte Carlo method. In this study, we derive macroscopically deterministic flow equations for the magnetization and transverse magnetization from the master equation in the adaptive quantum Monte Carlo method. Under the Suzuki-Trotter decomposition, we consider the Glauber-type stochastic process. We solve these differential equations by using the Runge-Kutta method and verify that these results are consistent with the saddle-point solution of mean-field theory. Finally, we analyze the stability of the equilibrium solutions obtained by the differential equations.

Publisher URL: http://arxiv.org/abs/1810.09943

DOI: arXiv:1810.09943v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.