3 years ago

Multi-layer non-hydrostatic free surface modelling using the discontinuous Galerkin method

Wei Pan, Stephan C. Kramer, Matthew D. Piggott

Publication date: Available online 8 January 2019

Source: Ocean Modelling

Author(s): Wei Pan, Stephan C. Kramer, Matthew D. Piggott

Abstract

A multi-layer non-hydrostatic version of the unstructured mesh, discontinuous Galerkin finite element based coastal ocean model, Thetis, is developed. This is accomplished using the PDE solver framework, Firedrake, which is used to automatically produce the code for the discretised model equations in a rapid and efficient manner. The motivation for this work is a need to accurately simulate dispersive nearshore free surface processes.

In order to resolve both frequency dispersion and non-linear effects accurately, additional non-hydrostatic terms are included in the layer-integrated hydrostatic equations, producing a form similar to the layered non-linear shallow water equations, but with extra vertical velocities at the layer interfaces. An implementation process is adopted to easily handle the inter-layer connection, i.e. the governing equations are transformed into a depth-integrated system through the introduction of depth-averaged variables.

The model is verified and validated through comparisons against several idealised and experimentally-based test cases. All the comparisons demonstrate good agreement, showing that the developed non-hydrostatic model has excellent capabilities in representing coastal wave phenomena including shoaling, refraction and diffraction of dispersive short waves, as well as propagation, run-up and inundation of non-linear tsunami waves.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.