3 years ago

Spiking activities in chain neural network driven by channel noise with field coupling

Ying Xu, Ya Jia, Huiwen Wang, Ying Liu, Ping Wang, Yunjie Zhao

Abstract

The distribution of electromagnetic field in both intracellular and extracellular environments can be changed by fluctuations in the membrane potential, and the effects of electromagnetic induction should be considered in dealing with neuronal electrical activities, wherein field coupling plays a very important role in signal exchange between neurons. In this paper, basing on an improved electromagnetic induction model, a chain network is designed to investigate the responses of the neural system to channel noise under field coupling. Both the synchronization factor and coefficient of variation are numerically simulated, and it is found that (i) the weak field coupling strength is conducive to the regularity of discharge patterns in the neuronal network; (ii) the synchronization of neural spikes can be enhanced by selecting a suitable coupling intensity; and (iii) in the presence of the weak noise intensity, the discharge mode of neuron is easily affected by the inducing coefficient. Our results show that the regularity of discharge patterns in a stochastic neural network depends on the field coupling intensity, which reflects the importance of field coupling in the selection of neural discharge modes.

Publisher URL: https://link.springer.com/article/10.1007/s11071-018-04752-2

DOI: 10.1007/s11071-018-04752-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.