3 years ago

Stationary distribution of stochastic Markov jump coupled systems based on graph theory

Yan Liu, Pinrui Yu, Dianhui Chu, Huan Su

Publication date: February 2019

Source: Chaos, Solitons & Fractals, Volume 119

Author(s): Yan Liu, Pinrui Yu, Dianhui Chu, Huan Su

Abstract

This paper focuses on the existence of a stationary distribution of stochastic Markov jump coupled systems (SMJCSs) for the first time, in which the coupling effect is considered. A new technique that is combining the graph theory, M-matrix method with the Lyapunov method is used to study stationary distribution, and sufficient conditions are presented to ensure the existence of a stationary distribution, which are more applicable and suitable for various fields, such as neural networks, biomathematics, physics and so forth. Moreover, sufficient conditions presented indicate that the existing region of stationary distribution is related to stochastic disturbance and the dimension of a system closely. Also, theoretical results are applied to stochastic Markov jump coupled oscillators systems in physics and then a specific theorem is presented. Eventually, some simulations are given to verify the feasibility and availability of our theoretical results.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.