3 years ago

A coupled and interactive influence of operational parameters for optimizing power output of cleaner energy production systems under uncertain conditions

Dezhi Chen, Surinder Singh, Liang Gao, Akhil Garg, Zhun Fan, Chin-Tsan Wang

Summary

The mechanisms in proton‐exchange membrane fuel cells (PEMFCs) cannot be explicitly represented by a mathematical function because the PEMFC system is multi‐dimensional and complex and represents uncertainty in operation variables, which cannot be modeled by experiments or by trial‐and‐error approach. Therefore, this work proposes to study the coupled and interactive influence of stack current (SC), stack temperature (ST), oxygen excess ratio (OER), hydrogen excess ratio (HER), and inlet air humidity (IAH) for optimizing the power output of PEMFC. The data obtained from the experiments have been inserted into architecture of automated neural‐network search, which automates the selection of error function, activation function, uncertainties in inputs and number of hidden neurons in formulation of a robust and accurate model for power density as a function of five operational variables. Among the operational variables, the correlation coefficient between the SC and the output power is the highest, followed by OER, and the ST. However, for HER and IAH, the power output follows negative nonlinear relation. The optimization converged at 130th iteration results in maximum power output of 3410 W for an optimum value of SC (51A), ST (59°C), OER (3:2), HER (1:10), and IAH (0.8).

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.