3 years ago

The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers

The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers
Mehedi Reza, Gerrit ten Brinke, Anton H. Hofman, Katja Loos, Janne Ruokolainen
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. Given the low concentration of copolymer, it is surprising to see that symmetric and highly grafted supramolecular double-comb diblock copolymers can self-assemble into ordered hierarchical morphologies. Multiple phase transitions are responsible for such behavior, and enable this supramolecular approach to be applicable in both low- and high-molecular-weight systems.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/marc.201700288

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.