5 years ago

Easily Regenerated Readily Deployable Absorbent for Heavy Metal Removal from Contaminated Water

Andrew R. Barron, Enrico Andreoli, Perry N. Alagappan, Lauren Morrow, Jessica Heimann
Although clean and abundant water is the keystone of thriving communities, increasing demand and volatile climate patterns are depleting rivers and aquifers. Moreover, the quality of such water sources is threatened by noxious contaminants, of which heavy metals represents an area of growing concern. Recently, graphene oxide (GO) has been suggested as an adsorbent; however, a support is desirable to ensure a high surface area and an immobile phase. Herein, we described the preparation and characterization of a supported-epoxidized carbon nanotube (SENT) via the growth of multi walled carbon nanotubes (MWNTs) onto a quartz substrate. Subsequent epoxidation provides sufficient functionality to enable adsorbent of heavy metals (Cd2+, Co2+, Cu2+, Hg2+, Ni2+, and Pb2+) from aqueous solution with initial concentrations (60–6000 ppm) chosen to simulate high industrial wastewater contamination. The SENT adsorption efficiency is >99.4% for all metals and the saturation concentration is significantly greater than observed for either GO or acid treated MWNTs. The SENT adsorbent may be readily regenerated under mild conditions using a globally available household chemical, vinegar. 1 g of SENT has the potential to treat 83,000 L of contaminated water down to WHO limits which would be sufficient for 11,000 people.

Publisher URL: https://www.nature.com/articles/s41598-017-06734-7

DOI: 10.1038/s41598-017-06734-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.