3 years ago

Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries

Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries
Kun Wang, Yu Jin, Jiahuan Luo, Jian Peng, Shixiong Sun, Qing Li, Yuyu Li, Yangyang Huang, Qin Zhang, Jiantao Han, Yunhui Huang, Yi Liu, Yuegang Qiu, Bo Liu
Sodium iron hexacyanoferrate (Fe-HCF) has been proposed as a promising cathode material for sodium-ion batteries (SIBs) because of its desirable advantages, including high theoretical capacity (∼170 mAh g–1), eco-friendliness, and low cost of worldwide rich sodium and iron resources. Nonetheless, its application faces a number of obstacles due to poor electronic conductivity and structural instability. In this work, Fe-HCF nanospheres (NSs) were first synthesized and fabricated by an in situ graphene rolls (GRs) wrapping method, forming a 1D tubular hierarchical structure of Fe-HCF NSs@GRs. GRs not only provide fast electronic conduction path for Fe-HCF NSs but also effectively prevent organic electrolyte from reaching active materials and inhibit the occurrence of side reactions. The Fe-HCF NSs@GRs composite has been used as a binder-free cathode with a capacity of ∼110 mAh g–1 at a current density of 150 mA g–1 (∼1C), the capacity retention of ∼90% after 500 cycles. Moreover, the Fe-HCF NSs@GRs cathode displays a super high rate capability with ∼95 mAh g–1 at 1500 mA g–1 (∼10C). The results suggest that the 1D tubular structure of 2D GRs-wrapped Fe-HCF NSs is promising as a high-performance cathode for SIBs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06334

DOI: 10.1021/acsami.7b06334

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.