5 years ago

Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting

Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting
Zhaoyang Fan, Chunming Niu, Dandan Ma, Jian-Wen Shi, Xin Ji, Yajun Zou
A novel CdS/ZnO heterojunction constructed of zero-dimensional (0D) CdS quantum dots (QDs) and two-dimensional (2D) ZnO nanosheets (NSs) was rationally designed for the first time. The 2D ZnO NSs were assembled into ZnO microflowers (MFs) via an ultrasonic-assisted hydrothermal procedure (100 °C, 12 h) in the presence of a NaOH solution (0.06 M), and CdS QDs were deposited on both sides of every ZnO NS in situ by using the successive ionic-layer absorption and reaction method. It was found that the ultrasonic treatment played an important role in the generation of ZnO NSs, while NaOH was responsible to the assembly of a flower-like structure. The obtained CdS/ZnO 0D/2D heterostructures exhibited remarkably enhanced photocatalytic activity for hydrogen evolution from water splitting in comparison with other CdS/ZnO heterostructures with different dimensional combinations such as 2D/2D, 0D/three-dimensional (3D), and 3D/0D. Among them, CdS/ZnO-12 (12 deposition cycles of CdS QDs) exhibited the highest hydrogen evolution rate of 22.12 mmol/g/h, which was 13 and 138 times higher than those of single CdS (1.68 mmol/g/h) and ZnO (0.16 mmol/g/h), respectively. The enhanced photocatalytic activity can be attributed to several positive factors, such as the formation of a Z-scheme photocatalytic system, the tiny size effect of 0D CdS QDs and 2D ZnO NSs, and the intimate contact between CdS QDs and ZnO NSs. The formation of a Z-scheme photocatalytic system remarkably promoted the separation and migration of photogenerated electron–hole pairs. The tiny size effect effectively decreased the recombination probability of electrons and holes. The intimate contact between the two semiconductors efficiently reduced the migration resistance of photogenerated carriers. Furthermore, CdS/ZnO-12 also presented excellent stability for photocatalytic hydrogen evolution without any decay within five cycles in 25 h.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08407

DOI: 10.1021/acsami.7b08407

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.