5 years ago

Highly Efficient CO2 Electrolysis on Cathodes with Exsolved Alkaline Earth Oxide Nanostructures

Highly Efficient CO2 Electrolysis on Cathodes with Exsolved Alkaline Earth Oxide Nanostructures
Changchang Pan, Kui Xie, Lizhen Gan, Fanglin Chen, Lingting Ye, Minyi Zhang, Chunsen Li
The solid oxide CO2 electrolyzer has the potential to provide storage solutions for intermittent renewable energy sources as well as to reduce greenhouse gas emissions. One of the key challenges remains the poor adsorption and activity toward CO2 reduction on the electrolyzer cathode at typical operating conditions. Here, we show a novel approach in tailoring a perovskite titanate (La, Sr)TiO3+δ cathode surface, by the in situ growing of SrO nanoislands from the host material through the control of perovskite nonstoichiometry. These nanoislands provide very enhanced CO2 adsorption and activation, with stability up to 800 °C, which is shown to be in an intermediate form between carbonate ions and molecular CO2. The activation of adsorbed CO2 molecules results from the interaction of exsolved SrO nanoislands and the defected titanate surface as revealed by DFT calculations. These cathode surface modifications result in an exceptionally high direct CO2 electrolysis performance with current efficiencies near 100%.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07039

DOI: 10.1021/acsami.7b07039

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.