5 years ago

One-Pot Synthesis and Purification of Ultralong Silver Nanowires for Flexible Transparent Conductive Electrodes

One-Pot Synthesis and Purification of Ultralong Silver Nanowires for Flexible Transparent Conductive Electrodes
Jiangna Guo, Ye Zhang, Yi Sun, Dan Xu, Feng Yan
Metal nanowires (NWs) have become the most promising candidates for the next generation of flexible transparent conductive electrodes (FTCEs), with high transmittance and low sheet resistance. In this work, ultralong silver NWs (Ag NWs), ∼220 μm (even larger than 400 μm) in length and ∼55 nm in diameter (aspect ratio: ∼4000), were synthesized via a one-pot polyol process using high molecular weight poly(vinylpyrrolidone) (Mw = 1 300 000) and an appropriate concentration of FeCl3 (12.5 μM) through hydrothermal reaction. The prepared Ag NWs were purified by a filter cloth (pore size: about 30 × 50 μm2) to remove the Ag nanoparticles and short-length Ag NWs. The FTCE based on the ultralong Ag NWs without any post-treatments exhibits low sheet resistance of 155.0 Ω sq–1 and transmittance of 97.70% at 550 nm. The outstanding performance of FTECs demonstrated that the ultralong Ag NWs are ideal materials for applications in flexible transparent optical devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07146

DOI: 10.1021/acsami.7b07146

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.