3 years ago

Reversible Colorimetric Sensor for Moisture Detection in Organic Solvents and Application in Inkless Writing

Reversible Colorimetric Sensor for Moisture Detection in Organic Solvents and Application in Inkless Writing
Rahul Sakla, Pawan Kumar, Amrita Ghosh, D. Amilan Jose
Colorimetric sensors based on Sudan-III (1) and Alizarin red S (2) have been developed for the detection of a trace amount of water in organic solvents such as THF, acetone, acetonitrile, and DMSO. The deprotonated (anionic) forms of 1 and 2 namely 1.F and 2.F are reprotonated by using a trace amount of water. Deprotonation of 1 and 2 was obtained by using fluoride anion. Test papers of 1.F and 2.F in organic solvents with and without moisture showed dramatic changes in color. Receptor 1.F exhibits high sensitivity for water in acetone and THF with the detection limit as low as 0.0042 and 0.0058 wt %. Remarkably, probes 1.F and 2.F are reversible in nature both in solution and in test strips. 1.F and 2.F are reversible and reusable for sensing moisture in the organic solvents with high selectivity, high sensitivity, and fast response. The reversible moisture sensor 1.F has also been used for application in inkless writing.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05335

DOI: 10.1021/acsami.7b05335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.