5 years ago

Controlled Growth and Atomic-Scale Mapping of Charged Heterointerfaces in PbTiO3/BiFeO3 Bilayers

Controlled Growth and Atomic-Scale Mapping of Charged Heterointerfaces in PbTiO3/BiFeO3 Bilayers
Jagadeesh Suriyaprakash, Shuang Li, Yin-Lian Zhu, Xiu-Liang Ma, Jin-Yuan Ma, Yu-Jia Wang, Ying Liu, Meng-Jiao Han, Yun-Long Tang, Si-Rui Zhang
Functional oxide interfaces have received a great deal of attention owing to their intriguing physical properties induced by the interplay of lattice, orbital, charge, and spin degrees of freedom. Atomic-scale precision growth of the oxide interface opens new corridors to manipulate the correlated features in nanoelectronics devices. Here, we demonstrate that both head-to-head positively charged and tail-to-tail negatively charged BiFeO3/PbTiO3 (BFO/PTO) heterointerfaces were successfully fabricated by designing the BFO/PTO film system deliberately. Aberration-corrected scanning transmission electron microscopic mapping reveals a head-to-head polarization configuration present at the BFO/PTO interface, when the film was deposited directly on a SrTiO3 (001) substrate. The interfacial atomic structure is reconstructed, and the interfacial width is determined to be 5–6 unit cells. The polarization on both sides of the interface is remarkably enhanced. Atomic-scale structural and chemical element analyses exhibit that the reconstructed interface is rich in oxygen, which effectively compensates for the positive bound charges at the head-to-head polarized BFO/PTO interface. In contrast to the head-to-head polarization configuration, the tail-to-tail BFO/PTO interface exhibits a perfect coherency, when SrRuO3 was introduced as a buffer layer on the substrates prior to the film growth. The width of this tail-to-tail interface is estimated to be 3–4 unit cells, and oxygen vacancies are supposed to screen the negative polarization bound charge. The formation mechanism of these distinct interfaces was discussed from the perspective of charge redistribution.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04681

DOI: 10.1021/acsami.7b04681

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.