3 years ago

Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single-Molecule Magnet (SMM) Behavior in a Family of CoIIYIII Dinuclear Complexes with Easy-Plane Anisotropy

Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single-Molecule Magnet (SMM) Behavior in a Family of CoIIYIII Dinuclear Complexes with Easy-Plane Anisotropy
José M. Moreno, Silvia Gómez-Coca, Elizaveta A. Suturina, Jurek Krzystek, Joscha Nehrkorn, María A. Palacios, Enrique Colacio, Karsten Holldack, Eliseo Ruiz, Alexander Schnegg
Three new closely related CoIIYIII complexes of general formula [Co(μ-L)(μ-X)Y(NO3)2] (X−=NO3− 1, benzoate 2, or 9-anthracenecarboxylato 3) have been prepared with the compartmental ligand N,N′,N′′-trimethyl-N,N′′-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L). In these complexes, CoII and YIII are triply bridged by two phenoxide groups belonging to the di-deprotonated ligand (L2−) and one ancillary anion X−. The change of the ancillary bridging group connecting CoII and YIII ions induces small differences in the trigonally distorted CoN3O3 coordination sphere with a concomitant tuning of the magnetic anisotropy and intermolecular interactions. Direct current magnetic, high-frequency and -field EPR (HFEPR), frequency domain Fourier transform THz electron paramagnetic resonance (FD-FT THz-EPR) measurements, and ab initio theoretical calculations demonstrate that CoII ions in compounds 1–3 have large and positive D values (≈50 cm−1), which decrease with increasing the distortion of the pseudo-octahedral CoII coordination sphere. Dynamic ac magnetic susceptibility measurements indicate that compound 1 exhibits field-induced single-molecule magnet (SMM) behavior, whereas compounds 2 and 3 only display this behavior when they are magnetically diluted with diamagnetic ZnII (Zn/Co=10:1). In view of this, it is always advisable to use magnetically diluted complexes, in which intermolecular interactions and quantum tunneling of magnetism (QTM) would be at least partly suppressed, so that “hidden single-ion magnet (SIM)” behavior could emerge. Field- and temperature-dependence of the relaxation times indicate the prevalence of the Raman process in all these complexes above approximately 3 K. CoY magnetic complexes: Three CoIIYIII dinuclear complexes that only differ in the ancillary bridging ligand connecting the CoII and YIII ions (nitrato, benzoato, or 9-anthreacenecarboxylato) are reported. These complexes exhibit field-induced single-molecule magnet (SMM) behavior either in their bulk or magnetic diluted versions.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201702099

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.