3 years ago

Mechanism and Scope of Phosphinidene Transfer from Dibenzo-7-phosphanorbornadiene Compounds

Mechanism and Scope of Phosphinidene Transfer from Dibenzo-7-phosphanorbornadiene Compounds
Christopher C. Cummins, Cristina García-Iriepa, Alexandra Velian, Manuel Temprado, Matthew Nava, Wesley J. Transue
Dibenzo-7-phosphanorbornadiene compounds, RPA (A = C14H10 or anthracene), are investigated as phosphinidene sources upon thermally induced (70–90 °C) anthracene elimination. Analysis of substituent effects reveals that π-donating dialkylamide groups are paramount to successful phosphinidene transfer; poorer π-donors give reduced or no transfer. Substituent steric bulk is also implicated in successful transfer. Molecular beam mass spectrometry (MBMS) studies of each derivative reveal dialkylamide derivatives to be promising precursors for further gas-phase spectroscopic studies of phosphinidenes; in particular, we present evidence of direct detection of the dimethylamide derivative, [Me2N═P]. Kinetic investigations of iPr2NPA thermolysis in 1,3-cyclohexadiene and/or benzene-d6 are consistent with a model of unimolecular fragmentation to yield free phosphinidene [iPr2N═P] as a transient reactive intermediate. This conclusion is probed by density functional theory (DFT) calculations, which favored a mechanistic model featuring free singlet aminophosphinidenes. The breadth of phosphinidene acceptors is expanded to unsaturated substrates beyond 1,3-dienes to include olefins and alkynes; this provides a new synthetic route to valuable amino-substituted phosphiranes and phosphirenes, respectively. Stereoselective phosphinidene transfer to olefins is consistent with singlet phosphinidene reactivity by analogy with the Skell hypothesis for singlet carbene addition to olefins.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05464

DOI: 10.1021/jacs.7b05464

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.