5 years ago

Size Effect in the Ionization Energy of PAH Clusters

Size Effect in the Ionization Energy of PAH Clusters
P. Bréchignac, P. Parneix, M. Rapacioli, F. Spiegelman, L. Dontot, C. Joblin, T. Pino, L. Nahon, G. A. Garcia
We report the first experimental measurement of the near-threshold photoionization spectra of polycyclic aromatic hydrocarbon clusters made of pyrene C16H10 and coronene C24H12, obtained using imaging photoelectron–photoion coincidence spectrometry with a VUV synchrotron beamline. The experimental results of the ionization energy are compared to calculated ones obtained from simulations using dedicated electronic structure treatment for large ionized molecular clusters. Experiment and theory consistently find a decrease of the ionization energy with cluster size. The inclusion of temperature effects in the simulations leads to a lowering of this energy and to quantitative agreement with the experiment. In the case of pyrene, both theory and experiment show a discontinuity in the IE trend for the hexamer. This work demonstrates the ability of the models to describe the electronic structure of PAH clusters and suggests that these species are ionized in astronomical environments where they are thought to be present.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01546

DOI: 10.1021/acs.jpclett.7b01546

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.