5 years ago

Insight into Water Structure at the Surfactant Surfaces and in Microemulsion Confinement

Insight into Water Structure at the Surfactant Surfaces and in Microemulsion Confinement
Alexander V. Benderskii, Muhammet Mammetkuliyev, Anton Svirida, Chayan Dutta, Marina Rukhadze
Interactions with surfactant molecules can significantly alter the structure of interfacial water. We present a comparative study of water–surfactant interactions using two different spectroscopic approaches: water at planar surfactant monolayers by sum frequency generation (SFG) spectroscopy and interfacial water confined in reverse micelles formed by the same surfactants using IR absorption spectroscopy. We report spectral features in the OH-stretching region (3200–3700 cm–1) that are observed in both IR and SFG spectra, albeit with different relative amplitudes, for ionic surfactant sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and nonionic surfactant polyoxyethylene(4)lauryl ether (Brij L-4) reverse micelles in hexane and the corresponding monolayers at the air/water interface. A prominent feature in the SFG spectra of the OH stretch at 3560 cm–1 is attributed to water molecules that have a weak donor hydrogen bond to the surfactant headgroup. The same feature is observed in the IR spectra of reverse micelles after deconvoluting the interfacial versus bulk spectral contributions. We performed an orientational analysis of these water molecules utilizing the polarization-dependent SFG spectra, which shows an average tilt angle of the OH stretch of surfactant-bound water molecules of ∼155° with respect to the surface normal.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04733

DOI: 10.1021/acs.jpcb.7b04733

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.