5 years ago

Semicrystalline Polymer Binary-Phase Structure Templated Quasi-Block Graft Copolymers

Semicrystalline Polymer Binary-Phase Structure Templated Quasi-Block Graft Copolymers
Chenyang Xing, Jingye Li, Yanyuan Wang, Yongjin Li, Lijun Ye, Jipeng Guan
Herein, we report a simple strategy to synthesize quasi-block graft copolymers using the binary phase structure of semicrystalline polymers as the template. An unsaturated ionic liquid, 1-vinyl-3-butylimidazolium bis (trifluoromethylsulfonyl) imide ([VBIm] [TFSI]), is thermodynamically miscible with poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) in solution. The solidification of P(VDF-co-HFP)/[VBIm] [TFSI] blend leads to the expelling of ILs from the crystalline region and the ILs are only located in the amorphous region. The electron-beam irradiation (EBI) at the solid state of the blends results in the locally grafting of the ILs onto the polymer blocks in the amorphous region, while the EBI does not affect the chemical structure of the crystalline region. Therefore, the quasi-block graft copolymers were achieved with IL-grafted blocks segregated by the unmodified blocks. The achieved block copolymers can be microphase separated into the various nanostructures, as the block copolymers with well-defined structure, upon varying the grafting ratios. The microphase separated quasi-block grafted copolymers exhibit excellent mechanical properties and good electrical properties. The elongation at break is 480% and the stress at break is as high as 30 MPa for the sample with the lamellar-like structure having the grafting ratio of 45.4 wt%.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b05069

DOI: 10.1021/acs.jpcb.7b05069

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.