5 years ago

Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution

Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
Tomi Laurila, Olga Lopez-Acevedo, Miguel A. Caro
We present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model, and (iv) the use of electrostatic potentials as references for the absolute electrochemical scale. We apply the approach presented to compute reduction potentials of the following redox couples: Cr2+/3+, V2+/3+, Ru(NH3)62+/3+, Sn2+/4+, Cu1+/2+, FcMeOH0/1+, and Fe2+/3+ (in aqueous solution) and Fc0/1+ (in acetonitrile). We argue that fully quantum-mechanical simulations are required to correctly model the intricate dynamical effects of the charged complexes on the surrounding solvent molecules within the solvation shell. Using the proposed methodology allows for a computationally efficient and statistically stable approach to compute free energy differences, yielding excellent agreement between our computed redox potentials and the experimental references. The root-mean-square deviation with respect to experiment for the aqueous test set and the two exchange-correlation density functionals used, PBE and PBE with van der Waals corrections, are 0.659 and 0.457 V, respectively. At this level of theory, depending on the functional employed, its ability to correctly describe each particular molecular complex seems to be the factor limiting the accuracy of the calculations.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00314

DOI: 10.1021/acs.jctc.7b00314

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.