3 years ago

Use of an Underlayer for Large Area Crystallization of Rubrene Thin Films

Use of an Underlayer for Large Area Crystallization of Rubrene Thin Films
Amir Avishai, Kevin Abbasi, Barry P. Rand, Vitaly Podzorov, Zhuozhi Yao, Hyun Ho Choi, Michael A. Fusella, Siyu Yang
In this work, we discovered a very efficient method of crystallization of thermally evaporated rubrene, resulting in ultrathin, large-area, fully connected, and highly crystalline thin films of this organic semiconductor with a grain size of up to 500 μm and charge carrier mobility of up to 3.5 cm2 V–1 s–1. We found that it is critical to use a 5 nm-thick organic underlayer on which a thin film of amorphous rubrene is evaporated and then annealed to dramatically influence the ability of rubrene to crystallize. The underlayer property that controls this influence is the glass transition temperature. By experimenting with different underlayers with glass transition temperatures varying over 120 °C, we identified the molecules leading to the best crystallinity of rubrene films and explained why values both above and below the optimum result in poor crystallinity. We discuss the formation of different crystalline morphologies of rubrene produced by this method and show that field-effect transistors made with films of a single-domain platelet morphology, achieved through the aid of the optimal underlayer, outperform their spherulite counterparts with a nearly four times higher charge carrier mobility. This large-area crystallization technique overcomes the fabrication bottleneck of high-mobility rubrene thin film transistors and other related devices and, given its scalability and patternability, may lead to practical technologies compatible with large-area flexible electronics.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01143

DOI: 10.1021/acs.chemmater.7b01143

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.