3 years ago

Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence

Takahiro Arima, Kentaro Tanemura, Hideo Matsuda, Kei Imai, Robert B. Gilchrist, Kan Sato, Masahiro Kaneda, Yutaka Hashiyada, Takumi Kojima, Hiroaki Okae, Satoshi Sugimura, Akira Yajima, Tadayuki Yamanouchi, Norio Kobayashi
During antral folliculogenesis, developmental competence of prospective oocytes is regulated in large part by the follicular somatic component to prepare the oocyte for the final stage of maturation and subsequent embryo development. The underlying molecular mechanisms are poorly understood. Oocytes reaching the advanced stage of follicular growth by administration of exogenous follicle-stimulating hormone (FSH) possess higher developmental competence than oocytes in FSH-untreated smaller follicles. In this study, the transcriptomic profile of the cumulus cells from cows receiving FSH administration (FSH-priming) was compared, as a model of high oocyte competence, with that from untreated donor cows (control). Ingenuity Pathway Analysis showed that cumulus cells receiving FSH-priming were rich in down-regulated transcripts associated with cell movement and migration, including the extracellular matrix-related transcripts, probably preventing the disruption of cell-to-cell contacts. Interestingly, the transcriptomic profile of up-regulated genes in the control group was similar to that of granulosa cells from atretic follicles. Interferon regulatory factor 7 was activated as the key upstream regulator of FSH-priming. Thus, acquisition of developmental competence by oocytes can be ensured by the integrity of cumulus cells involved in cell-to-cell communication and cell survival, which may help achieve enhanced oocyte-somatic cell coupling.

Publisher URL: https://www.nature.com/articles/s41598-017-07039-5

DOI: 10.1038/s41598-017-07039-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.