5 years ago

Comprehensive structural analysis of designed incomplete polypeptide chains of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus

Marcius da Silva Almeida, Luis Mauricio Trambaioli da Rocha e Lima, Leonardo Vazquez

by Leonardo Vazquez, Luis Mauricio Trambaioli da Rocha e Lima, Marcius da Silva Almeida

The cotranslational folding is recognized as a very cooperative process that occurs after the nearly completion of the polypeptide sequence of a domain. Here we investigated the challenges faced by polypeptide segments of a non-vectorial β-barrel fold. Besides the biological interest behind the SARS coronavirus non-structural protein 1 (nsp1, 117 amino acids), this study model has two structural features that motivated its use in this work: 1- its recombinant production is dependent on the temperature, with greater solubility when expressed at low temperatures. This is an indication of the cotranslational guidance to the native protein conformation. 2- Conversely, nsp1 has a six-stranded, mixed parallel/antiparallel β-barrel with intricate long-range interactions, indicating it will need the full-length protein to fold properly. We used non-denaturing purification conditions that allowed the characterization of polypeptide chains of different lengths, mimicking the landscape of the cotranslational fold of a β-barrel, and avoiding the major technical hindrances of working with the nascent polypeptide bound to the ribosome. Our results showed partially folded states formed as soon as the amino acids of the second β-strand were present (55 amino acids). These partially folded states are different based on the length of polypeptide chain. The native α-helix (amino acids 24–37) was identified as a transient structure (~20–30% propensity). We identified the presence of regular secondary structure after the fourth native β-strand is present (89 amino acids), in parallel to the collapse to a non-native 3D structure. Interestingly the polypeptide sequences of the native strands β2, β3 and β4 have characteristics of α-helices. Our comprehensive analyses support the idea that incomplete polypeptide chains, such as the ones of nascent proteins much earlier than the end of the translation, adopt an abundance of specific transient folds, instead of disordered conformations.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0182132

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.