3 years ago

Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties

Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties
Dafni Moatsou, Lucas Montero de Espinosa, Christoph Weder, Worarin Meesorn
Materials with switchable mechanical properties are widespread in living organisms and endow many species with traits that are essential for their survival. Many of the mechanically morphing materials systems found in nature are based on hierarchical structures, which are the basis for mechanical robustness and often also the key to responsive behavior. Many “operating principles” involve cascades of events that translate cues from the environment into changes of the overall structure and/or the connectivity of the constituting building blocks at various levels. These concepts permit dramatic property variations without significant compositional changes. Inspired by the function and the growing understanding of the operating principles at play in biological materials with the capability to change their mechanical properties, significant efforts have been made toward mimicking such architectures and functions in artificial materials. Research in this domain has rapidly grown in the last two decades and afforded many examples of bioinspired materials that are able to reversibly alter their stiffness, shape, porosity, density, or hardness upon remote stimulation. This review summarizes the state of research in this field.

Publisher URL: http://dx.doi.org/10.1021/acs.chemrev.7b00168

DOI: 10.1021/acs.chemrev.7b00168

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.