5 years ago

Relationship between Amphipathic β Structures in the β1 Domain of Apolipoprotein B and the Properties of the Secreted Lipoprotein Particles in McA-RH7777 Cells

Relationship between Amphipathic β Structures in the β1 Domain of Apolipoprotein B and the Properties of the Secreted Lipoprotein Particles in McA-RH7777 Cells
Zhihuan Sun, Richa Kapil, Jere P. Segrest, Nassrin Dashti, Medha Manchekar
Our previous studies demonstrated that the first 1000 amino acid residues (the βα1 domain) of human apolipoprotein (apo) B-100, termed apoB:1000, are required for the initiation of lipoprotein assembly and the formation of a monodisperse stable phospholipid (PL)-rich particle. The objectives of this study were (a) to assess the effects on the properties of apoB truncates undergoing sequential inclusion of the amphipathic β strands in the 700 N-terminal residues of the β1 domain of apoB-100 and (b) to identify the subdomain in the β1 domain that is required for the formation of a microsomal triglyceride transfer protein (MTP)-dependent triacylglycerol (TAG)-rich apoB-containing particle. Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. (1) The presence of amphipathic β strands in the 200 N-terminal residues of the β1 domain resulted in the secretion of apoB truncates (apoB:1050 to apoB:1200) as both lipidated and lipid-poor particles. (2) Inclusion of residues 300–700 of the β1 domain led to the secretion of apoB:1300, apoB:1400, apoB:1500, and apoB:1700 predominantly as lipidated particles. (3) Particles containing residues 1050–1500 were all rich in PL. (4) There was a marked increase in the lipid loading capacity and TAG content of apoB:1700-containing particles. (5) Only the level of secretion of apoB:1700 was markedly diminished by MTP inhibitor BMS-197636. These results suggest that apoB:1700 marks the threshold for the formation of a TAG-rich particle and support the concept that MTP participates in apoB assembly and secretion at the stage where particles undergo a transition from PL-rich to TAG-rich.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.6b01174

DOI: 10.1021/acs.biochem.6b01174

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.