5 years ago

An online 2D-reversed-phase – Reversed-phase chromatographic method for sensitive and robust plasma protein quantitation

An online 2D-reversed-phase – Reversed-phase chromatographic method for sensitive and robust plasma protein quantitation
Offline high-pH reversed-phase fractionation is widely used to reduce sample complexity in proteomic workflows. This is due to the semi-orthogonality and high peak resolution of the two separations. Offline 2D fractionation, however, is low throughput and requires several manual manipulations and is prone to sample losses. To address these issues, we developed an online two dimensional high-pH – low-pH reversed-phase-reversed-phase LC-MRM (2D RPRP) method whereby hundreds of peptides can be quantified in a single LC-MS/MS injection. The method allowed the reproducible and sensitive quantitation of a test panel of 367 peptides (168 proteins) from undepleted human plasma. Of these, we were able to detect and quantify 95 peptides (29 proteins) by 2D-RPRP that were not detectable by 1D LC-MRM-MS. Online 2D RPRP resulted in an average increase of roughly 10-fold in sensitivity compared to traditional 1D low-pH separations, while improving reproducibility and sample throughput relative to offline 2D RPRP by factors of 1.7 and 5, respectively, compared to offline 2D RPRP. This paper serves as proof-of-concept of the feasibility and efficacy of online 2D RPRP at analytical flow rates for highly multiplexed targeted proteomic analyses.

Publisher URL: www.sciencedirect.com/science

DOI: S1874391917302622

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.