3 years ago

A synchrotron x-ray diffraction and hard x-ray photoelectron spectroscopy study of Zn negative electrodes at different charge and discharge states of Zn/MnO2 batteries using an ionic liquid-based gel polymer electrolyte

A synchrotron x-ray diffraction and hard x-ray photoelectron spectroscopy study of Zn negative electrodes at different charge and discharge states of Zn/MnO2 batteries using an ionic liquid-based gel polymer electrolyte
Zn/MnO2 batteries including an ionic liquid-based gel polymer electrolyte (IL-GPE) have been discharged or discharged and then recharged reaching different states of charge. The Zn electrodes used in these Zn/MnO2 batteries are studied by HAXPES and synchrotron XRD techniques. Besides, HAXPES measurements are compared with the results obtained by a conventional XPS. Formation of Zn(OH)2 and ZnO is found in intermediate states of charge during charging and discharging. However, only ZnO is observed in the anode when a full discharging was carried out. Conversely, an entire charging process produces a complete reduction of all Zn2+ species to metallic Zn. In addition, various techniques have confirmed the entrance of Triflate anions and NMP solvent molecules in the electrode, accompanying the Zn2+ cations movement during the charging.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317309801

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.