3 years ago

Ultraviolet-light-induced electron transfer between chlorine anions and graphene

Ultraviolet-light-induced electron transfer between chlorine anions and graphene
Outer-shell electrons of singly-charged anions are allowed to be detached by absorbing photons with appropriate energy that is larger than the corresponding atomic electron affinity. In an anion-graphene system, these escaped electrons face the possibility of travelling to graphene through the electron-exchanged path that originates from the anion-graphene orbital overlapping. Using electrical measurements, we observe that the hole concentration of gold-chloride-functionalized graphene decreases upon ultraviolet-light impingements, yet by contrast it persists under visible lights. Then we identify the governing mechanism in which chlorine anions are neutralized to gaseous molecules, thus donating electrons to graphene, subsequently elevating the Fermi level, and lowering the electrical conductivity in graphene. This mechanism is validated by field-effect-transistor-based Dirac-point-shift measurements that reveal Fermi-level and carrier-mobility variations of graphene. Raman statistical analyses and X-ray photoelectron spectroscopy measurements are employed to further confirm this electron-transfer-related process. Our study can be applied to designs of anion-graphene-embedded devices for sensing as well as energy harvesting.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317307662

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.