3 years ago

Graphite Nanoplates Firmly Anchored with Well-dispersed Porous Zn3V2O8 Nanospheres: Rational Fabrication and Enhanced Lithium Storage Capability

Graphite Nanoplates Firmly Anchored with Well-dispersed Porous Zn3V2O8 Nanospheres: Rational Fabrication and Enhanced Lithium Storage Capability
Developing electrode materials with both high energy and power densities is of crucial importance for lithium ion batteries (LIBs). In this work, a novel anode material, graphite nanoplates firmly anchoring with well-dispersed porous Zn3V2O8 nanospheres (Zn3V2O8/GNPs), is rationally fabricated via a simple and scalable liquid reflux and subsequent calcination process. The introduced GNP matrices significantly improved the electrochemical performances of the Zn3V2O8/GNPs by enhancing structural durability of the electrodes and facilitating the electron-transfer and mass-transport kinetics. Thus, the Zn3V2O8/GNPs-50 exhibits a reversible specific capacity of 648mAh g−1 at a current density of 0.8Ag−1 after 100 cycles and 488mAhg−1 at a high current density of 3.2Ag−1 after 400 cycles. Inspiringly, a new full cell (Zn3V2O8/GNPs-50//LNCM-111) was successfully assembled, which manifested superior electrochemical performances. Hence, we believe that this study demonstrates a promising anode material for next generation LIBs, and particularly, provides a strategy for the rational design of GNPs-based metal oxide composite materials.

Publisher URL: www.sciencedirect.com/science

DOI: S001346861731530X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.