3 years ago

Chitosan perception in Arabidopsis requires the chitin receptor AtCERK1 suggesting an improved model for receptor structure and function

Melcher, N. E., Gubaev, Gubaeva, R., Singh, S., Cord-Landwehr, B. M., A., E., Moerschbacher, El Gueddari
Chitin, a linear polymer of N-acetyl-D-glucosamine, and chitosans, fully or partially deacetylated derivatives of chitin, are known to elicit defense reactions in higher plants. We compared the ability of chitin and chitosan oligomers and polymers (chitin oligomers with degree of polymerization 3 to 8; chitosan oligomers with degree of acetylation 0% to 35% and degree of polymerization 3 to 15; chitosan polymers with degree of acetylation 1% to 60% and degree of polymerization ~1300) to elicit an oxidative burst indicative of induced defense reactions in A. thaliana seedlings. Fully deacetylated chitosans were not able to trigger a response; elicitor activity increased with increasing degree of acetylation of chitosan polymers. Partially acetylated chitosan oligomers required a minimum degree of polymerization of 6 and at least four N-acetyl groups to trigger a response. Invariably, elicitation of an oxidative burst required the presence of the chitin receptor AtCERK1. Our results as well as previously published studies on chitin and chitosan perception in plants are best explained by a new general model of LysM-containing receptor complexes where two partners form a long, but off-set chitin-binding groove and are, thus, dimerized by one chitin or chitosan molecule, sharing a central GlcNAc unit with which both LysM domains interact. To verify this model and to distinguish it from earlier models, we assayed elicitor and inhibitor activities of selected partially acetylated chitosan oligomers with fully defined structures. In contrast to the initial 'continuous groove', the original 'sandwich', or the current 'sliding mode' models for the chitin/chitosan receptor, the here proposed 'slipped sandwich' model - which builds on these earlier models and represents a consensus combination of these - is in agreement with all experimental observations.

Publisher URL: http://biorxiv.org/cgi/content/short/170092v1

DOI: 10.1101/170092

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.