3 years ago

Development of a Virtual Cell Model to Predict Cell Response to Substrate Topography

Development of a Virtual Cell Model to Predict Cell Response to Substrate Topography
Michal Wojcik, Ke Xu, Omid Mashinchian, Mohammad Reza Ejtehadi, Maziar Heidari, Matthew John Dalby, Tiam Heydari, Morteza Mahmoudi
Cells can sense and respond to changes in the topographical, chemical, and mechanical information in their environment. Engineered substrates are increasingly being developed that exploit these physical attributes to direct cell responses (most notably mesenchymal stem cells) and therefore control cell behavior toward desired applications. However, there are very few methods available for robust and accurate modeling that can predict cell behavior prior to experimental evaluations, and this typically means that many cell test iterations are needed to identify best material features. Here, we developed a unifying computational framework to create a multicomponent cell model, called the “virtual cell model” that has the capability to predict changes in whole cell and cell nucleus characteristics (in terms of shape, direction, and even chromatin conformation) on a range of cell substrates. Modeling data were correlated with cell culture experimental outcomes in order to confirm the applicability of the virtual cell model and demonstrating the ability to reflect the qualitative behavior of mesenchymal stem cells. This may provide a reliable, efficient, and fast high-throughput approach for the development of optimized substrates for a broad range of cellular applications including stem cell differentiation.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03732

DOI: 10.1021/acsnano.7b03732

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.