5 years ago

Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes

Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes
Germanium is a promising anode for lithium ion batteries (LIB) because of its potential rate capability and high theoretical specific capacity. Here we demonstrate a seamlessly connected graphene and carbon nanotube (GCNT) hybrid that serves as an integral current collector for a Ge anode. A vertically aligned CNT (VA-CNT) forest grown on graphene provides a high surface area for Ge deposition. The seamless connection between graphene and VA-CNT facilitates electron transport from the Ge to the Cu current collector. Graphene serves to alleviate mechanical strain between the electrode and current collector. The mechanical resilience of the GCNT lessens Ge pulverization on charge/discharge of the LIB. As a result, the Ge/GCNT anode has a high specific capacity of 1315 mAh/g after 200 cycles at 0.5 A/g and a high rate performance of 803 mAh/g at 40 A/g.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317307637

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.