3 years ago

Disordered Topography Mediates Filopodial Extension and Morphology of Cells on Stiff Materials

Disordered Topography Mediates Filopodial Extension and Morphology of Cells on Stiff Materials
Thomas J. Webster, Brian W. Sheldon, Qunyang Li, Viswanath Chinthapenta, Ze Gong, Yuan Lin, Lei Yang
In cell–material interactions, cells use filopodia to sense external biochemical and mechanical cues, and subsequently dictate their survival. In an effort toward understanding how disordered topography of stiff materials influences filopodial recognition, diamond films with grain sizes varying from nano- to micrometers are fabricated for the investigation of osteoblast filopodial extension. Interestingly, straight filopodia with pronounced cell–substrate adhesion are observed on a nanocrystalline diamond (NCD) region, whereas filopodia on a microcrystalline diamond (MCD) surface only adhere to, and get deflected by, large diamond grains. More importantly, filopodia on NCD keep propagating with a constant velocity, whereas the same process takes place in a slow and intermittent manner on MCD. A theoretical model is also developed and it suggests that the contact between the disordered topography and the filopodial tip plays a key role in altering filopodial growth dynamics. In particular, it is predicted that large surface asperities can block the movement of the filopodial tip, delay its extension, and cause bending of the structure, in quantitative agreement with experimental observations. These findings reveal previously underappreciated effects of random, stiff topographies on the response of cells, and hence can provide new insights for the design of future implant biomaterials. Cell filopodial extension on ultrastiff, disordered topography reveals a unique path governed by the contact between the filopodial tip and surface asperities. Supported by both experimental and modeling evidence, for the first time, this extension dynamics is distinct from that reported on soft or ordered topographies, and therefore provides key information to understand and design the biointerface of medical implants.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201702689

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.