5 years ago

Cationic Chains of Parent Arsanylboranes and Substituted Phosphanylboranes

Cationic Chains of Parent Arsanylboranes and Substituted Phosphanylboranes
Alexander V. Virovets, Josef Baumann, Gábor Balázs, Christian Marquardt, Manfred Scheer
The substituted monomeric phosphanylboranes Ph2P−BH2⋅NMe3 (1) and tBuHP−BH2⋅NMe3 (2) have been used for the synthesis of cationic chain compounds built up by R2P−BH2 units. With a simple synthesis route, the highly stable cations [Me3N⋅H2B−PR1R2−BH2⋅NMe3]+ (1 a, 2 a) and [Me3N⋅H2B−PR1R2−BH2−PR1R2−BH2⋅NMe3]+ (1 b, 2 b) (R1=R2=Ph; R1=H, R2=tBu) are obtained as iodide (I−) salts. The reaction of H2As−BH2⋅NMe3 (3) with IBH2⋅SMe2 leads to [Me3N⋅H2B−AsH2−BH2−AsH2−BH2⋅NMe3][I] (3 a), the longest so far known arsanylborane chain. Compound 3 a reacts with acetonitrile through a formal hydroarsination reaction to form [cyclo-{As(BH2⋅NMe3)(CMe=NH)2(BH2)}][I] (4). The reported synthetic strategy has proved to be a powerful tool for the formation of small, cationic oligomeric units. All products were comprehensively characterized by X-ray structure analysis, NMR, IR spectroscopy, and mass spectrometry in cooperation with DFT calculations. Cationic inorganic chains: The synthesis of oligomeric, cationic group 13/15 compounds was successfully extended to organosubstituted phosphanylboranes. Furthermore, the longest so far known chain with a backbone consisting of alternating B and As atoms was obtained, which was converted into a heterocycle by a hydroarsination reaction with acetonitrile.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201702384

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.