5 years ago

Curing kinetics and curing process of phenolic impregnated carbon ablator

Curing kinetics and curing process of phenolic impregnated carbon ablator
Ye Tian, Haiming Huang, Xiaoliang Xu
Phenolic impregnated carbon ablator (PICA), which is composed of the phenolic resin (PR) and carbon fiber, is of particular interest to researchers in the aerospace field. In this work, PICA was prepared by the double-stage isothermal heating curing. Then, the curing kinetics of boron-modified phenolic resin (BPR) was investigated by non-isothermal differential scanning calorimetry method in order to optimize the curing temperature of BPR. Further, the effect of the heating rate during curing process on the compressive strength of PICA was discussed in detail. The experimental data show that the curing of BPR needs more energy so that the curing temperature of BPR under different condition is higher than that of virgin PR. Notably, with the increasing heating rate during the curing process, the micro-cracks increase and the compressive strength of PICA decreases. Once the heating rate exceeds a critical value, the micro-cracks no longer increase and the heating rate has insignificant effect on the compressive strength. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45434.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45434

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.