5 years ago

Physical and cognitive effort discounting across different reward magnitudes: Tests of discounting models

Paweł Ostaszewski, Wojciech Białaszek, Przemysław Marcowski

by Wojciech Białaszek, Przemysław Marcowski, Paweł Ostaszewski

The effort required to obtain a rewarding outcome is an important factor in decision-making. Describing the reward devaluation by increasing effort intensity is substantial to understanding human preferences, because every action and choice that we make is in itself effortful. To investigate how reward valuation is affected by physical and cognitive effort, we compared mathematical discounting functions derived from research on discounting. Seven discounting models were tested across three different reward magnitudes. To test the models, data were collected from a total of 114 participants recruited from the general population. For one-parameter models (hyperbolic, exponential, and parabolic), the data were explained best by the exponential model as given by a percentage of explained variance. However, after introducing an additional parameter, data obtained in the cognitive and physical effort conditions were best described by the power function model. Further analysis, using the second order Akaike and Bayesian Information Criteria, which account for model complexity, allowed us to identify the best model among all tested. We found that the power function best described the data, which corresponds to conventional analyses based on the R2 measure. This supports the conclusion that the function best describing reward devaluation by physical and cognitive effort is a concave one and is different from those that describe delay or probability discounting. In addition, consistent magnitude effects were observed that correspond to those in delay discounting research.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0182353

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.