3 years ago

Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches

Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches
Wolfgang Kleist, Paul Sprenger, Jan-Dierk Grunwaldt
The selective oxidation of propylene to acrolein is an important reaction in the chemical industry which has been extensively studied over the last few decades. Today, spectroscopic, computational, and synthetic approaches allow a renewed view of this established and well-understood catalytic process at a fundamental level. Consequently, a revised mechanistic pathway for the selective propylene oxidation over bismuth molybdates has been suggested recently. Furthermore, studies concerning the local interaction of specific surface entities as well as concepts from semiconductor science have provided valuable information to describe the operation mode of oxidation catalysts. New synthetic methods can be used not only to tune the specific surface area and surface species of a catalyst but also to give direct access to distinct metal oxide phases or specific crystalline phases with a synergetic interplay on the nanoscale. Since complex multicomponent systems, which exhibit both higher selectivity and activity in comparison to pure bismuth molybdates, are used for industrial applications, it is important to transfer the research concepts from such model systems to those more complex systems. This also involves operando characterization techniques on multiple length scales. Recent research activities shine a renewed light on this well-studied reaction, which therefore may become one of the drivers in selective oxidation catalysis to apply and further establish new tools that have been developed in theory, modeling, synthesis, and operando spectroscopy.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01149

DOI: 10.1021/acscatal.7b01149

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.